High-temperature stability and selective thermal emission of polycrystalline tantalum photonic crystals.
نویسندگان
چکیده
We present the results of extensive characterization of selective emitters at high temperatures, including thermal emission measurements and thermal stability testing at 1000 °C for 1h and 900 °C for up to 144 h. The selective emitters were fabricated as 2D photonic crystals (PhCs) on polycrystalline tantalum (Ta), targeting large-area applications in solid-state heat-to-electricity conversion. We characterized spectral emission as a function of temperature, observing very good selectivity of the emission as compared to flat Ta, with the emission of the PhC approaching the blackbody limit below the target cut-off wavelength of 2 μm, and a steep cut-off to low emission at longer wavelengths. In addition, we study the use of a thin, conformal layer (20 nm) of HfO(2) deposited by atomic layer deposition (ALD) as a surface protective coating, and confirm experimentally that it acts as a diffusion inhibitor and thermal barrier coating, and prevents the formation of Ta carbide on the surface. Furthermore, we tested the thermal stability of the nanostructured emitters and their optical properties before and after annealing, observing no degradation even after 144 h (6 days) at 900 °C, which demonstrates the suitability of these selective emitters for high-temperature applications.
منابع مشابه
Large-area fabrication of high aspect ratio tantalum photonic crystals for high-temperature selective emitters
The authors present highly selective emitters based on two-dimensional tantalum (Ta) photonic crystals, fabricated on 2 in. polycrystalline Ta substrates, for high-temperature applications, e.g., thermophotovoltaic energy conversion. In this study, a fabrication route facilitating large-area photonic crystal fabrication with high fabrication uniformity and accuracy, based on interference lithog...
متن کاملThree-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification.
Selective thermal emission in a useful range of energies from a material operating at high temperatures is required for effective solar thermophotovoltaic energy conversion. Three-dimensional metallic photonic crystals can exhibit spectral emissivity that is modified compared with the emissivity of unstructured metals, resulting in an emission spectrum useful for solar thermophotovoltaics. Howe...
متن کاملHigh-temperature tantalum tungsten alloy photonic crystals: Stability, optical properties, and fabrication
متن کامل
Tailoring self-assembled metallic photonic crystals for modified thermal emission.
We predict that modified thermal emission can result from three-dimensional, self-assembled photonic crystals. In previous tungsten structures, known as inverse opals, strong absorption prevented any influence of the periodicity. We consider the origin of this effect and show how to tailor both absorption and surface coupling in experimentally realizable metallic inverse opals. Calculations for...
متن کاملGlobal optimization of omnidirectional wavelength selective emitters/absorbers based on dielectric-filled anti-reflection coated two-dimensional metallic photonic crystals.
We report the design of dielectric-filled anti-reflection coated (ARC) two-dimensional (2D) metallic photonic crystals (MPhCs) capable of omnidirectional, polarization insensitive, wavelength selective emission/absorption. Using non-linear global optimization methods, optimized hafnium oxide (HfO2)-filled ARC 2D Tantalum (Ta) PhC designs exhibiting up to 26% improvement in emittance/absorptance...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Optics express
دوره 21 9 شماره
صفحات -
تاریخ انتشار 2013